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Abstract 

Tile concepts of global and local relative convexity and oriented relative 
convexity are described and proposed as tools for the characterization of molecular 
shapes. The usual concept of convexity is a special case of the generalization 
described. Oriented relative convexity is suitable for the characterization of 
molecular shapes in external fields, such as magnetic fields or fields representing 
cavity regions of various enzymes or zeolite catalysts. Potential applications include 
new approaches to computer-based drug design and molecular engineering. 

1. Introduction 

Convexity is an important  tool for the characterization of  the shapes of  sets 
in a metric space [1 ,2 ] ,  and provides mathematical tools for the description of  shapes 
o f  physical objects. However, for certain applications the scope of  the conventional 
concept  o f  convexity is somewhat limited; it cannot be directly applied to distinguish 
those sets and objects that are "almost"  convex in some practical, approximate sense 
from those that have dominant nonconvex features. In the strict sense, both  types of  
sets are nonconvex,  although a minor deformation may turn some of  them into a 
convex set. For certain physical applications, such as the description of  molecular 
shape (which is important  in drug design and molecular engineering, see refs. [ 3 - 2 8 ]  ), 

it is advantageous to introduce methods that can differentiate shapes according to 
some "degree of  nonconvexi ty"  (or a "degree of  convex i ty" )  that can be used for a 

precise, quantitative shape comparison o f  different molecules. 
In this paper, we shall describe two approaches for a generalization of  the 

concept  of  convexity that are applicable to the molecular problem. 
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The first approach is directly linked to tire usual, global definition of convexity; 
a subset C of a metric space X is convex it" and only if for any two points of the 
subset C, 

x I ,x  2 C C, (1) 

all points x generated as 

X = ~ X  1 "t- (1 -- O ' )X 2 ( 2 }  

are also elements of  set C, for every real number c~ fulfilling the condition 

O~<c~< 1. (3) 

Pictorially, for any two points x 1 and X 2 o f  set C, the straight line segment inter- 
connecting them is also within C. In the generalization of global convexity considered 
in this paper, this straight line is allowed to be replaced by some curved line, fulfilling 
certain curvature conditions. This leads to the concept of global relative convexiO~, 
relative to these curvature conditions. By placing some orientational restrictions on 
these lines, one obtains criteria for orientcd global relative corTvc,-cit.},. 

The second approach, which is in fact more useful t\)r the chemical applica- 
tions which motivate our study, is somewhat less general, as it applies only to sets 
and objects with an everywhere twice continuously differentiable boundaJ?~. By 
applying certain local criteria for the boundary points, local c~,nvexiO' can be defined, 
as follows: 

At each point r C  G of the continuous and differentiable boundary G o f a  
set C, a local tangent hyperplane n -  1R(r) can be defined, where n is the dimension 
of  set C. (In molecular shape characterization, the Jl = 3 case is of primary importance.) 
In a sufficiently small local neighborhood of point r, the boundary hypersurface G 
may be regarded as a function Gr(q) over this tangent hyperplane n - l R ( r ) "  where 
q ~ n -  1R(r). We shall assume that this function @(q)  is negative along the normal 
vector of the tangent hyperplane n - 1R(r) pointing toward the interior of set C, it 
is zero at point r, and it takes positive values along the normal vector pointing in 
the direction of  the exterior of  set C. Within this local representation, the tangent 
point q = r is a critical point of Gr(q), and the Hessian matrix k'~q(r) of the second 
derivatives 02 Gr(q)/Oqi Oq] may be used for its characterization. The eigenvalues 

h 1 , h z . . . . .  h . - 1  (4) 

o f / ~ ( r )  are referred to as the local canonical curvatures of the boundary G at point r. 
Points r E G can be classified according to their critical point index, the number / l ( r )  
of  negative eigenvalues of / ~ ( r ) .  Set Au is the collection of all boundary points 
r E G with precisely/1 negative canonical curvatures: 
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A .  = Ir " r C G,/a(r) = ~}. (5) 

The sets A~ generate a partitioning of the boundary G: 

n - i  

G = U A . .  (6) 
,u=0 

A,, c~ A. ,  = 0 .  if ~ =/:/a'. (7) 

A set A~ may be disconnected. We shall use the Du, i notation for the ith maximum 
connected component of A**. Evidently, 

G : U Dui  (8) 
/J , l  

and 

D~, i (hDv,,i, = 0,  if either ~ 4: # '  or i 4: i'. (9) 

The decomposition (8) of boundary G is based on local curvature properties. 
In the most common n = 3 case, the three types of domains Do,i, D1, i and D2, i 
correspond to locally concave, saddle type, and convex boundary pieces, respectively. 
Note that a D~, i set is not necessarily open, and the term "domain" is used in an 
uncon ventional sense. 

Pictorially, the above classification of hypersurface domains according to 
local convexity can be obtained by an inspection of the relations between the boundary 
hypersurface G and its tangent hyperplane n-  1R(r) at point r E G. For example, 
in the n = 3 case, if the tangent hyperplane lies locally on the "inside" of G, then 
H(r) = 0: if it lies locally on the outside of G, then /a(r) = 2; and if it cuts into G 
within any small open neighborhood of r, then ~(r)  = 1. The local neighborhoods 
are concave, convex, and of the saddle type, respectively. 

In the generalization of local convexity considered in this paper, the tangent 
hyperplane is replaced by some more general tangent hypersurface of some specified 
curvature properties. This leads to the concept of local relative convexity, relative to 
the specified curvature properties of the tangent hypersurface. The simplest case 
corresponds to a tangent sphere of some finite radius; the infinite radius gives the 
original tangent hyperplane. By placing some orientational restriction on a non- 
spherical tangent hypersurface, one obtains the concept of oriented local relative 
conl,'exity. This latter concept has applications to the description of molecular shape 
in external electromagnetic fields, or in fields generated by other molecules, where 
orientation has a crucial chenrical role. 
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The presentation given in the following sections is general for the finite n- 
dimensional case. However, in view of the intended chemical applications we shall 
often use the terminology of two-dimensional surfaces that in the general n-dimen- 
sional case should correspond to that of (n - 1)-dimensional hypersurfaces. 

2. Global relative convexity 

We shall consider all possible paths p ( s )  contained within a connected subset C 
of an n-dimensional Euclidean space nE. If for any two points x I and x 2 of set C 
there eMsts a path p ( s )  interconnecting them within set C and satisfying a specified 
set of curvature restrictions, then set C is globally convex  relative to these curvature 

restrictions. 
Each path p ( s )  is parametrized by the arc length s. For each component 

t)i (S) of point p (s) along the path p (s), where 

p ( s )  = (p~ (s),  p2 (s) . . . . .  p , , (s))  (10) 

the curvature restrictions can be given in a general form: 

bi, f. <~ d 2 p i ( s ) / d s  2 ~ bi, u, i = 1 ,2  . . . . .  n. (11) 

Here, bi, ~ and bi, u are the lower and upper curvature bounds, respectively, for 
path component P i  If for any two points x 1 , x 2 E C there exists a path p ( s )  that is 
contained in set C and interconnects points x I and x2,  and if conditions (11) are 
fulfilled for every parameter value s along the path for each component Pi,  then set C 
is globally convex  with respect to the sets o f  lower and upper  bounds  on dipzectional 

CIAFPatuFes, 

{bi,~}i= 1 ..... ,, (12) 

and 

{bi, u}i= 1 ..... n , (13) 

respectively. Note that in general these bounds may be different for different 
components Pi,  which implies a dependence  on orientation.  

If, however, 

- h i ,  Q = hi, u = b, foral l  i = 1,2 . . . . .  n, (14) 

that is, if 
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Fig. 1. I l lustrat ion of the concept  of global relative convexity.  Set C is no t  globally 
convex relative to curvature b o= 0 (straight line, the convent ional  concept  of 
convexi ty) ,  nor  relative to curvature b~, bu t  the same set C is globally convex 
relative to curvature b 2 . 
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Fig. 2. i l lustrat ion of the concept  of  or iented global relative convexi ty.  The set C 
of  fig. 1 is globally convex relative to any curvature along one or ienta t ion ,  bu t  it 
is no t  globally convex relative to curvatures b o and b~, along ano ther  or ien ta t ion ,  

perpendicular  to the  first one. 
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[dZPi(s)/ds21 <~ b, forall i = 1,2 . . . . .  n, (15) 

then all directions are equivalent and then set C is globally convex relative to curva- 
ture b, with no reference to orientation. Ttle concepts of global relative convexity 
and oriented global convexity are illustrated in figs. 1 and 2. 

3. Local relative convexity 

Consider the set C, assume that it has an everywhere twice differentiable 
boundary hypersurface G, and choose a test hypersurface 7". Local relative convexity 
will be defined with respect to this test hypersurface T, which may be some closed 
manifold or a hyperplane. Hypersurface T is also twice differentiable everywhere. 

For any point r @ G,the tangent hyperplane n-  1R(r) of G is well defined, By 
appropriate translation and rotation, the test hypersurface T can always be moved into 
a position where T becomes a tangent to hyperplane n-1R(r)"  precisely at the point 
r E G that is the point of tangential contact between G and hyperplane n-  ~R(r). 
In fact, each point of the test hypersurface T can be made to coincide with point 
r E G so that Tand n-1R(r )  are tangents to each other. 

Such an arrangement of the test hypersurface T is called a placement P(r) 
of T, and the family of all placements is denoted by P(r). For each such placement P, 
both hypersurfaces G and T can be regarded locally as functions defined over tile 
hyperplane n - 1R (r), 

G~(q) : "-~R(r)  -+ IR, (16) 

Tr, p ( q ) : n - l R ( r )  -+ aR, (17) 

where q E n-  1R(r), and in tile notation the actual placement P of tile test hyper- 
surface T is indicated. 

For both locally defined functions Gr(q) and Tr, p(q), point q = r is a critical 
point that can be characterized by their respective Hessian matrices 

and 

Na (r) (1 S) 

#ffT, p(r),  (19) 

which, in turn, are characterized by their nondecreasing sequences of eigenvalues: 

hi, h2 . . . . .  hn - 1 (20) 



P.G. Mezey, Global and local relative convexity 331 

and 

h i ,  b2  . . . . .  bn- 1,  (21) 

respectively. 
The local relative convexity is expressed by the relative curvature relations 

between the boundary hypersurface G of set C and the test hypersurface T, at the 
point r where they become tangents. The curvature properties of G at point r, relative 
to placement P of T, can be characterized by the relations anaong the eigenvalues of 
the two Hessian matrices. In particular, we define index pi, p(r) as follows: 

Idi,p(r) = the number of hj eigenvalues within the [b i_ 1, bi) interval, (22) 

where the b 0 = - ~  convention is used. Note that in the above definition, the interval 
is closed -open. Of course, the relative distribution of eigenvalues (canonical curva- 
tures of the two hypersurfaces), and hence these indices pi, p(r), do depend on the 
placement P of the test hypersurface T, that is, on the actual positioning and oscu- 
lation of Tto  G. 

The set of indices, 

{ Idi, p ( r  )}i  : 1 . . . . .  n - 1 ' (23) 

describes the local convexity of G at point r, relative to placement P of the test 
hypersurface T. 

For each point r E G, a partial order ~< can be defined for the placements P 
of the test hypersurface T, as follows: 

P ~< P' (24) 

if and only if 

{Pi, l,(r)} <~ {Ui, p,(r)}, (25) 

where in (25) the symbol ~ refers to the lexicographic ordering of (n - 1)-tuples of 
integers. Placement P is called a minimal placement if (24) holds with respect to any 
other placement P' .  

For a minimal placement, the subscript P will be omitted and we shall use the 
index set 

{ P i ( r ) } i  : 1 . . . . .  t , -  1 "  (26) 

for the characterization of local convexity o f  hypersurface G at point r relative to test 
hypersurface T. 
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Evidently, for a general reference hypersuri'ace T, tile realization of a minimal 
placement P requires that T should be allowed to be shifted and rotated freely in 
order to find a "best" (a minimal) fitting P to O at point r. However, for certain 
physical problems where external directions may play some important role, one may 
need a model where not all placements of T are allowed. In particular, an important 
class of physical problems suggests a model where the orientation of the test hyper- 
surface T is restricted, and only translations are allowed in bringing about an oscu. 
lation of the two hypersurfaces G and Tat  each selected point r ~ G. This restriction 
leads to the concept of local oriented relative convexity with reference to an oriented 
test hypersurface T. Note that in this context, the term orientation refers to an 
external coordinate system of the space within which G and T are embedded, and it 
evidently differs from tile topological concept of orientation given to manifolds. 

Subset P o ( r ) o f  all placements P(r)contains  all those placements of T which 
are related to some standard positioning Po of T by a rigid translation. 

The index set 

Idi, po ( r ) } i  : l . . . . .  n -  w ( 2 7 )  

is obtained for a placement Po that is minimal within the subset Po of placements 
fulfilling tile orientation constraint on T, that is, 

Po : m in{P ' P  C Po(r)} . (28) 

Index set (27) characterizes tile local oriented relazire com'exiO' ojhypersurtbce G 
al poinl r, with respect ;o the oriented test hyl~ersur/bce T. 

The subsets of all points having common index sets, 

and 

e4{ , i l  = {r r C G ,  {gi(rt} = gi}} (29) 

A{vi,  mo } : { r ' r  C G, {lli, p (r}} -- {/-/i, Po}} (30) 

generate two partitlonings of tile boundary G, with respect to the test hypersurface T" 

and 

C : U A{,j/} (31 

C = u 4 { , i , , %  } . ( 3 2 )  

The maximum connected components D~,,i ~i and D~,,i p I i of sets Aj,,,~ and 
A{v i p ~, for all index combinations {Hi} and {/'/i P } '  respectively generate finer 
partitionings o f  hypersurface G : 
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L O C A L  R E L A T I V E  C O N V E X I T Y  

[ ~  p r , ~ r  1 p ( r  3 )  r 2 

r 3 

D{11,1 

D [ 1 1 , 3 ~  

33 

Fig. 3. Local relative convexity is defined with reference to a test surface T. The 
twice differentiable boundary G of set C is locally characterized at point r by 
placing the test surface so as to have a common tangent plane with G at point r. 
and fulfill the requirements of a minimum placement (see text).  Note that in 
obtaining a minimum placement,  there is no restriction on the orientation of  test 
surface T, and both translations and rotations of  T are allowed. The local curvature 
properties of  G at point r, relative to those of  T, determine the local relative 
convexity of  G at r. Domains DIO}I and O{t} j  of  the contour  G shown in the 
figure are locally concave and c0t~'~ex, respectively, relative to test contour  T. 
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O R I E N T E D  L O C A L  R E L A T I V E  C O N V E X I T Y  
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Fig. 4. Oriented local relative convcxily is defined with reference to an oriented 
test surface T. In obtaining a pklcement of  T, where for the chosen point r o1" G 
the tangent planes of G and T coincide, only translations of T : l r ea l lowed ,  and 
T must retain its original orientat ion.  The local curvature properties of G at point r, 
relative to those of  T, determine the oriented local relative convexity of G at r. 
Domains D{O}, j and D{1}, j of  the contour G shown in the figure are locally concave 
and conve£, respectively, relative to oriented contour T. Note that lhc domains 
D{0},/. and D{1 } / o b t a i n e d  in the oriented case are different froiu those obtained 
in the non-orien'ted case shown in fig. 3 for the sanle pair G and T o ' c o n t o u r s .  
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G = u Dl,,i},y 

ira the case of a freely rotating test hypersurface T, and 

(33) 

G = u D{ui, Po},y (34) 

ira the oriented case. 
An illustration of  the concepts of local relative convexiO,, and the resulting 

decomposition of a contour G into various D{ui}/ domains is given in fig. 3. An 
alternative D{~i, po}, j domain decomposition of the s~me contour G, based on oriented 
loeal relat&e com,e.vitv with reference to a fixed orientation of the same test contour 
surface T, is shown in fig. 4. 

The above D sets generate cellular decompositions [ 2 9 - 3 2 ]  of hypersurface G 
of set C, in terms of local convexity properties relative to a free or oriented test hyper- 
surface T. By eliminating certain D sets of selected index sets, topologically significant 
changes are introduced into the boundary set G, which can be monitored by the 
homology groups H k of the resulting truncated boundary set G'. These homology 
groups give an algebraic characterization of relative and oriented relative local 
convexity of hypersurface G of set C. Alternative characterization can be given in 
terms of incidence graphs and shape graphs, using the methods discussed in ref. [33]. 
Note that an analogous technique, restricted to tangent hyperplanes, has been used 
earlier ti)r tire analysis of potential energy hypersurtilces [ 3 4 - 3 6 ] .  

4. Applications to molecular surfaces in external fields 

For a function f ( r )  describing a molecular property depending on three-space 
position vector r, for example, the electronic charge density, electrostatic potential, 
ttOMO and LUMO molecular orbitals, or van der Waals surfaces, etc., a contour set 
G(a)is defined [24,25] as 

G(a) = { r : f ( r )  = a}. (35) 

Such a contour surface G(a) may be regarded as the boundary of a level set 

c = C(a) = { r : f ( r )  < a} or lC(a) = r : f ( r )  > a/ (36) 

of the given molecular property f ( r ) .  In general, G(a) is a two-dimensional surface 
(n - 1 = 2) embedded in a three-dimensional Euclidean space (n = 3). 

Global convexity and global relative convexity of such molecular surfaces are 
certainly relevant to the study of the shape of molecules, especially if one is interested 
in the overall, approximate shapes such as in the case of certain globular proteins. 
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However, for detailed shape characterization, which is needed in drug design, the 
concepts of local relative convexity and oriented local relative convexity are of 
greater importance. In the following, we shall elaborate on their applications to the 
molecular problem. 

For a given test surface T, each point r E G is characterized by the pair of 
numbers, P l ( r ) , /~2( r )  for the freely rotating case and P l P o ( r ) ' P 2 P o ( r ) f o r  the 
oriented case, as given by eqs. (26) and (27L respectively, in' ~ither case' the surface 
G(a) is partitioned into the respective connected subsets D~l,~2, I of the following 
index combinations: 

Do,o,j, Do, l, ], Do,2,j, DI,O, j, D1,1, ] , and D2,0, ] . (37) 

By eliminating domains of a given type, for example by omitting all domains 
D~1,~2, I of a specified index pair/J~, ~2, one obtains the truncated contour surface 

a(a, (~ . ,2) ) .  (38) 

ttomology groups H k ( p l .  P2), k = 0, 1,2,  are constructed in the standard way, as 
described e.g. in refs. [ 2 9 - 3 2 ]  in full generality, and in refs. [24,25] for the specific 
chemical problem. These homology groups provide a concise characterization of 
local conl;exio: of G(a) relath'e to surthce 7". In some instances, it may be advan- 
tageous to eliminate two or more types of domains. 

If T has some fixed orientation Po, then for the truncated contour surface 

G(a, (/~1,o,/12,0 )) (39) 

the homology groups Hk(gl ,o  ~ g2,o), k = 0, 1,2,  are constructured in an analogous 
manner, and they describe the oriented local convexity of G(a) relative to the given 
orientation Po of  the rejbrence surface T. In some applications, the minimal place- 
ment P can be replaced by a maximal placement P", characterized by P' ~< P" for 
every placement P ' .  

The above general treatment can be simplified considerably if the test surface T 
shows some regularities. 

The simplest such case is that of  the choice of T as a plane, also considered in 
ref. [24]. Here, only the free, non-oriented description is possible; furthermore, 
P2 = 0 in the general case. For every placement P~ the freely rotating test plane T 
coincides with the local tangent plane 2R (r) at every point r E G(a), and hence 

b I = b 2 = O. (40) 

Consequently, the [bl, b=) interval is empty and according to definition (22), the 
index g2 is identically zero. The family (37) of general domain types reduces to a 
family of only three types: 
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Do, / ,D 1,j, and D 2,/ ,  (41) 

that is, to concave, saddle and convex domains, where only index/a 1 and serial index / 
are indicated. 

The next level of complexity is represented by the case where the test surface T 
is chosen as a sphere, in part described in ref. [25]. In this case, orientation has no 
role and b~2 = 0, just as in the case of the plane. The two eigenvalues of ~ r ( r )  
coincide, 

b 1 = b= = b. (42) 

For minimal placements, 

b <~ 0. (43) 

Replacing the condition of minimal placement with that of a maximal place- 
ment leads to fitting the sphere T to G(a) from the outside: for these cases, 

0 ~< b. (44) 

For both cases, (43) and (44), the partitioning of G(a) is given in terms of 
three domain types: 

Do,/(b),Dl, i(b) ,  and D2,i(b ). (45) 

Within these domains none, one, and two eigenvalues of ff-ffG(a)(r), respectively, are 
less than the value b. 

The above two simplest models, the cases of tile test plane [eqs. (40)--(41)] 
and the test sphere [eqs. ( 4 2 ) - ( 4 5 ) ] ,  have been introduced earlier using a different 
approach [24,25].  Tile present, general approach, however, is suitable for several 
additional applications which are not possible within the earlier models. The simplest 
such case is represented by the choice of T as an ellipsoid. This is the first case 
discussed here where orientation may play a role. The axes of the ellipsoid may be 
aligned with an external field; for example, with an external electromagnetic field, or 
a field generated by a nearby molecule or solid surface. 

In fig. 5, the oriented local relative convexity of a simple contour G is 
described, with reference to two, perpendicular orientations of an ellipse T. In fig. 6, 
the three domain types of  a sphere are shown, defined in terms of oriented local 
convexity relative to an ellipsoid. Note that within the two D o domains, the sphere 
is locally concave with respect to the oriented ellipsoid T, at all points of the con- 
nected D~ set of genus 4, the sphere is locally saddle-like relative to the oriented test 
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D{1},1 

D{1}3 [ ~  
( /D{°I'I D{o},2 ~ ' ~  

D{°I'S ~ D{°}'4 

D{1},5 

D{1),4 

[~] p 
o 

D{o},4 
P " ~  D{I/'I ~ ]  

o 0% @ 
D{o},2 

Fig. 5. Oriented local convexity of a contour C relative to an ellipse as a test 
contour T, The two, perpendicular orientations of ellipse T lead to two, different 
patterns of domains D{0}, j and D{1 },j, 

surface T, whereas there are only two, small domains of type D 2 where the sphere is 
locally convex relative to the oriented ellipsoid. 

In both the free and oriented cases one may consider both minimal and 
maximal placements; in general, each of the four combinations results in a different 
partitioning of  the molecular surface G(a). Since for an ellipsoid T the local Hessian 
~r(r) has in general two different eigenvalues, all six domain types of family (37) 
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ORIENTED LOCAL RELATIVE CONVEXITY 

radius of sphere G(a): r=3.0] 

lh alf axes of test ellipsoid T " a=O.5, b=2.5, c=8.01 

IPolar angles of viewing direction: 0=60, ,=ao I 

I:ig. 6. A three-dilnensional example of oriented local relative convexity. The two- 
dimensional spherical surface G at  the three-dimensional ball of radius 3.0 is 
characterized relative to an oriented ellipsoid T a r  half axes a =0.5,  b = 2 . 5 , a n d  
c = 8 . 0 ,  along coordinate axes x, y, and z, respectively. The polar angles of the 
viewing direction are 0 = 60 ° and r~ = 30 ° . There are two D O domains (locally 
concave relative to the oriented ellipsoid T), a single D, set (locally of saddle 
shape relative to T), and two, small D 2 domains (locally convex relative to T). 
The genus of set D~ is 4. 

m a y  occu r .  F o r  a f ree ly  ro t a t ing  e l l ipso id  T, the h o m o l o g y  groups  Hk(12~, P2), 
k = 0,  1 , 2 ,  whereas  in the  case o f  an o r i e n t e d  e l l ipso id  T, the  h o m o l o g y  g roups  

Hk(tll,o,ll2,o), k = 0,  1 , 2 ,  p rov ide  a de t a i l ed  c h a r a c t e r i z a t i o n  o f  the  shape  o f  

m o l e c u l a r  surface  G ( a ) .  

The m o s t  genera l  case for  the  choice  o f  tes t  surface  T al lows one to  express  

the  re la t ive  local  c o n v e x i t y  o f  one m o l e c u l a r  surface  G(a)in te rms o f  a n o t h e r  

m o l e c u l a r  sur f3ce ,  by  choos ing  

T = G' (a'). (46) 

In p a r t i c u l a r ,  the  fo l lowing  poss ib i l i t i es  are o f  special  i n t e re s t :  

(i) G ' ( a ' )  is a i no lecu la r  sur face  o f  a different physical property of" the same 
molecule. F o r  e x a m p l e ,  G(a) is an i sode ns i t y  c o n t o u r  at  dens i ty  a ,  and  the 

sur face  T = G'(a') is a vail der  Waals sur face ,  or  a HOMO c o n t o u r  sur face .  
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(ii) 

(iii) 

(iv) 

(v) 

G (a) and G' (a ')  are mole cular surfaces for the same pruper O, o f  two d~[ferent 
rnoh, cules. For example, both are isodensity surfaces for a pair of molecules 
with a common (a = a' ), or a pair of different electron density values (a 4 = a' ). 
This leads to a direct comparison o f  the shapes of  two molecules. 

If our goal is to test the complementarity of  shapes o f  molecules of specific 
chemical, biochemical, or pharmacological activity and the shapes of enzyme 
cavities where they react, then the test surface T = G'(a') may be chosen as 
the contour surface of the active molecule, and the shape of the contour 
surface G(a) of the enzyme cavity can be described relative to G'(a'). 

Alternatively, G(a) may be taken as a contour surface of the active molecule; 
in this case, the test surface G ' ( a ' )  may be chosen based on the relevant part 
of  an actual contour surface of  the cavity region of the enzyme. Since this 
cavity nmst have an entrance, the relevant surface region by itself does not 
usually form a closed surface. However, it can be suitably completed by a 
surface domain of some specified curvature properties, well distinguished 
from those of the actual contour of the cavity. The resulting test surface 
T = G ' ( a ' )  can be used to describe the shape of the drug molecule relative 
to the enzyme cavity. 

By taking the union C'(a), 

C'(a) = U C/(a) (47) 

of the level sets Ci(a) of several molecules M i known to be active within the 
same type of enzyme cavity, the test surface T = G ' (a ' )  may be taken as the 
boundary of  the union C'(a). If the set {M i} of molecules M i is sufficiently 
representative, then the union surface G'(a') provides a good approximation 
to the relevant shape features of the enzyme ca~,ity [19]. 

In practice, it is useful to introduce size constraints on the domains of various 
types to be considered as topologically significant entities. If a domain has a maxinmm 
diameter smaller than a specified threshold, then it may be assumed to belong to a 
neighbor domain of  largest common boundary. 

In case (i), the relative shapes of two shape descriptions of the same molecule 
can be analysed and characterized by the shape group technique [33]. 

In case (ii), a direct shape comparison is obtained for the two molecules, with 
respect to the selected molecular property, e.g. charge density. If the relative orienta- 

k tions of  the molecules are fixed then the shape groups H (Pl,0, P2,0), k = 0, 1,2,  
obtained using an oriented local relative convexity analysis, provide a detailed 
characterization. 

Choices (iii) (v) provide means to analyze shape complementarity of different 
molecules. These latter approaches, ( i i i )-(v),  represent alternatives to the description 
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of shape complementarity based on complementary truncations of contour surfaces 
G 1 (a) and G 2 (a) of two molecules M 1 and M2, respectively, and the direct comparison 
of the resulting shape groups Hk(/ .q),  k = 0, I, 2, and Hk(/a2), k = 0, 1,2, or the 
resulting shape graphs [33,37].  Here, indices /1~ and #2 are those of the comple- 
mentary domain types Dul and Du2 eliminated from the two contour surfaces G~ (a) 
and G 2 (a), respectively, satisfying the shape complementarity condition 

lUl - #21 = 2. (48) 

Examples 

In figs. 7 and 8, the contour surfaces of atoms H, C, and O of radii 1.20 A, 
1.70 A. and 1.40 A, respectively, are displayed. The various shading patterns indicate 
a decomposition according to local convexity relative to an oriented ellipsoid of half 
axes a = 0 . 5  A, b =2.5  A, and c =8 .0  A, along coordinate axes x , y ,  andz ,  
respectively. Atom H is represented by the smallest sphere of large local curvature, 
and it has the smallest two D o domains, which are concave relative to the oriented 
ellipsoid, elongated along the z axis. The corresponding D o domains are larger for 
the 0 atom and particularly, for the C atom, which atoms are represented by spheres 
of  larger radii. Within these D O domains, the test ellipsoid T osculates the spheres 
from the inside. At each point of a D~ domain, the tangent ellipsoid must also cut 
into the spherical surface. Within domains of the D 2 type, the ellipsoid osculates 
the spheres from the outside. Pictorially, the domains Do, D~, and D 2 a r e  locally 
concave, saddle-like, and convex, respectively, relative to the oriented ellipsoid T. 

The exmple of fig. 9 illustrates the oriented local relative convexity of a 
charge density contour surface of the formaldehyde molecule H2CO , with respect 
to an oriented ellipsoid T identical to that used in the examples of figs. 7 and 8. The 
contour density has been chosen so as to approximate the charge densities along the 
atomic spheres of the previous examples. If the orientation and the magnitudes of the 
half axes of the ellipsoid are defined by the orientation and strength of some external 
electromagnetic fields, then the pattern of  domains on the molecular contour surface 
characterizes the shape of" the molecule relative to these fields. The most essential 
feature of  these patterns can be described using the shape group method [24,25]. 
For the /a = 0 truncation, the shape groups H °, H ~ , and H 2 are the infinite cyclic 
group, a free Abelian group of five generators, and the trivial group, respectively, 
with Betti numbers 

B o = 1, B 1 = 5, B 2 = 0. (49) 
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IOriented relative convexity of atomic contour surfaces I 

I H ATOM I 

r=  1 .20  

D O D I D 2 

C 

r= 1.70 

ATOM ] 

I o ATOM I 

z l  > 

l half of test ellipsoid: 0.5, 1.5, 2.01 
1 

a x e s  Y 

l:ig. 7. Contour surfaces of charge densities of atoms hydrogen, carl)on,and oxygen, 
of radii 1.20, 1.70, and 1.40, respectively (approximate van der Waals radii). Using 
an oriented test ellipsoid T of half axes 0 .50 ,1 .50 ,  and 2.00, along coordinate axes 
x, y, and z, respectively, the patterns of D 0, D~, and D 2 domains are displayed. 
Note that the atomic contours are not displayed on scale. 
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I Oriented relative convexity of atomic contour surfaces 

> [view along the x axis] y 

half axes of test ellipsoid: a=0.5, b=l.5, c=2.0] 

F'ig. 8. A representation of the atomic contour surfaces 
of  fig. 7, indicating all three types of domains on scale. 

Do 

D, 

[--I D2 

For the /~ = 2 truncation, the respective shape groups are the infinite cyclic group, 
a free Abelian group of seven generators, and a trivial group, with Betti numbers 

B o = 1, B 1 = 7,  B z = O. (50) 

The above Betti numbers of the shape groups obtained prmdde a concise description 
of the oriented local relative convexity of the charge density contour surface of the 
f\mnaldehyde molecule, with respect to an external field represented by the oriented 
ellipsoid 7". 

Oriented local relative convexity is also a possible tool for describing stages in 
general chemical reactions in which the relative orientation and positioning of the 
reacting molecules are the determining factors. It also appears to have a role in the 
characterization of catalytic processes on metal surfaces, within channels and cavities 
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I M o l e c u l a r  c o n t o u r  s u r f a c e  G ( a )  l 

A 

i iiiiiiiiiiiiii!i!ii!!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiill 
9 

Y 

Cross-sections of 

test ellipsoid T 

H 
0 

H / 

Do 

D, 

I I D2 

Fig. 9. Oriented local convexi ty  of  a charge densi ty contour  surface of  the 
fo rmaldehyde  molecule H2CO, relative to an oriented ellipsoid T of half axes 
0.50, 1.50, and 2.00, along coordina te  axes x ,  y ,  and z,  respectively. For the/2 = 0 
t runca t ion ,  the shape groups H ° ,  H ~ , and H 2 are the infinite cyclic group,  a free 
Abelian group of tive generators ,  and the trivial group, respectively, with Betti  
numbers  B o = 1 ,  B~ = 5, B: = 0 .  For  the ~ = 2  t runcat ion ,  the respective shape 
groups are the  infini te  cyclic group,  a free Abelian group of seven generators ,  and 
the trivial group,  with  Bctti  numbers  B 0 = 1, B~ = 7, B 2 = 0. 

of zeolite lattices, or within the pocket regions of enzymes, where relative orientation 
and positioning of molecules are of great significance. Polarization effects on 
molecular shapes in external fields is a subject of great importance in its own right, 
and oriented relative convexity is a tool for analyzing and comparing the shape dif- 
ferences induced by varying degrees of polarization. 
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